
International Journal of Fuzzy Systems manuscript No.
(will be inserted by the editor)

Clustering of mixed data by integrating fuzzy, probabilistic
and collaborative clustering framework

Arkanath Pathak · Nikhil R. Pal

Received: date / Accepted: date

Abstract Clustering of numerical data is a very well
researched problem and so is clustering of categorical
data. However, when it comes to clustering of data with
mixed attributes, the literature is not that rich. For nu-
merical data, fuzzy clustering, in particular, the fuzzy c-
means (FCM), is a very effective and popular algorithm,
while for categorical data, use of mixture model is quite
popular. In this paper, we propose a novel framework
for clustering of mixed data which contains both nu-
merical and categorical attributes. Our objective is to
find the cluster substructures that are common to both
the categorical and numerical data. Our formulation is
inspired by the FCM algorithm (for dealing with numer-
ical data), mixture models (for dealing with categorical
data) and the collaborative clustering framework for ag-
gregation of the two - it is an integrated approach that
judiciously uses all three components. We use our algo-
rithm on a few commonly used datasets and compare
our results with those by some state of the art methods.

Keywords Fuzzy Clustering · Mixed Data · Mixture
Models · Collaborative Clustering

1 Introduction

Clustering is one of the most commonly used exploratory
data analysis techniques. In majority of the real life
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data sets, objects are usually represented by numerical
features (we call such data sets as objects data sets).
There are also many examples, where objects are rep-
resented by categorical values (we call such data sets as
categorical data sets). For both object data and cate-
gorical data, there are many clustering algorithms avail-
able [19,12,18,17,24,16]. Of course, the number of al-
gorithms available for object data are much more than
that for the categorical data. In addition to these two
types of data, often we get mixed-data where an ob-
ject is represented by both numerical features as well
as categorical attributes. Although, there are several
clustering algorithms for mixed data, the literature is
not as rich as it is for the other two types of data. In this
study we shall focus on clustering of mixed data. The
available spectrum of clustering algorithms can be di-
vided into hard and soft (fuzzy or probabilistic) cluster-
ing algorithms. In case of a hard clustering algorithm,
such as the k-means [11], an object either belongs to a
cluster or does not belong; while for a fuzzy or proba-
bilistic cluster, an object can belong to more than one
cluster and its degree of belonging to a cluster is repre-
sented either by a probability or membership value [4,
3]. In this paper we shall develop a fuzzy (soft) cluster-
ing framework to find a partition of a mixed data set
by exploiting the common cluster substructure present
in both categorical and numeric data.

Let X = {x1, x2, ..., xn} be a dataset which is to
be clustered into c clusters. There are many cluster-
ing algorithms in the literature. Fuzzy c-means (FCM)
[4]remains one of the most widely used algorithms for
clustering datasets that deal with numerical data. The
algorithm tries to minimize the following objective func-
tion:

J =
∑c
i=1

∑n
j=1 uij

mdij ,m > 1 (1)
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subject to the following set of constraints:∑c
i=1 uij = 1, ∀j; 1 <

∑n
j=1 uij < n, ∀i;uij ∈ [0, 1]

(2)

where n is the number of data points and c is the num-
ber of clusters. uij denotes the belongingness of the jth

data point to the ith cluster, and dij = D2
ij where Dij

is distance between the center of the ith cluster and the
jth data point. Usually Dij is an inner product induced
distance including the Euclidean distance. In this in-
vestigation we shall use m = 2. The details of the FCM
algorithm can be found in [2].

Although in many cases we need to deal with only
numerical data, it is not uncommon to have others data
types; the other most commonly encountered data type
is the categorical data type. In this paper, we devise a
new FCM type algorithm for clustering of data that
contain both numerical and categorical attributes. In
the past researchers have proposed various approaches
for clustering mixed datasets [1,6,9,13,20,21,26,27,22].
Ahmad and Dey[1] proposed a k -means like algorithm
for clustering of mixed data which uses a distance mea-
sure involving two parts: one for the numerical attributes
and the other for the categorical attributes. To make
the distance between categorical attributes useful, the
distance between two different attribute values is com-
puted based on their overall distribution as well as their
co-occurrence with other attributes. However, this al-
gorithm does not allow fuzzy membership of the data
points. Huang[15] proposed a k -prototype algorithm for
mixed datasets that combines the k -means algorithm
and k -modes algorithm. Here to compute the distance
between the categorical prototype and the data vector
(categorical part) the number of mismatch in attribute
values is considered. For each cluster, a weight for the
categorical attributes is also used. Ji et al.[20] extended
the a k -prototype algorithm to include fuzzy partitions.
In addition, authors use a concept of fuzzy centroid to
represent the prototype of a cluster, where a in a fuzzy
centroid each attribute has a fuzzy category value.

One of the most efficient partitioning strategies is
the use of mixture models. A mixture model assumes
each cluster to be generated from some specific prob-
ability distribution. The objective is then to find the
mixture parameters by maximizing the likelihood of a
given data set. The log likelihood in such an algorithm
is of the following form ([5]):

L =
∑n
j=1 log

∑c
i=1 (πip(xj|θi)) (3)

where c is the number of clusters, n is the number of
data members, πi are the cluster proportions and θ is
the vector representing the distribution parameters. If

we assume that X is incomplete and assume the unob-
served data as Y = {yi}ni=1; yi ∈ {1, 2, · · · , c}; where
yi = k if xi is from the kth cluster, then the log of the
complete likelihood is:

logP (X,Y |θ) =
n∑
i=1

log(P (xi|yi)P (yi)) =

n∑
i=1

log(πyiP (xi|θyi)). (4)

The EM algorithm is used to maximize the likelihood
with respect to it’s parameters. Numerical attributes
are most commonly modelled as mixtures of Gaussian
distributions.

Everitt[9] proposed such an algorithm by relating
both numerical and ordinal attributes to Gaussian dis-
tributions. Here the ordinal values are assumed to be
generated by thresholding from some unobservable con-
tinuous variables. However, this assumption often is
not realistic. Jorgensen and Hunt[21] proposed another
mixture model algorithm, which generalizes both the
latent class model and the multivariate normal mixture
model. This mixture model can also be viewed as a
graphical model. Gath and Geva[10] proposed an FCM
type algorithm by associating the dissimilarity measure
dij in the fuzzy c-means algorithm to an "exponential"
distance measure. This method makes an implicit as-
sumption that the clusters can be modeled using Gaus-
sian distributions. The "exponential" distance measure
used is defined as the negative log-likelihood of the
Gaussian distribution representing the cluster:

dij = − log p(xj|θi) (5)

Chatzis[6] recently extended upon the approach used
by Gath,Geva[10] to include the categorical attributes.
Chatzis modelled the categorical attributes of the ob-
servations for each cluster as a multinomial distribu-
tion. Assuming the categorical part to be independent
of the numerical part, the joint probability takes the
following form:

p(xj|θi) = N (xN
j |µi,Σi)Mult(xC

j |γi
) (6)

where xj is the concatenation of numerical feature vec-
tor xN

j and the categorical feature vector xC
j , i.e. xj =

[xN
j : xC

j ];N (xN
j |µi,Σi) is a Gaussian distribution mod-

eling the numerical part of the data for cluster i and
Mult(xC

j |γi
) represents a multinomial distribution for

the categorical part of the data in the i-th cluster. The
objective function proposed by Chatzis is as follows:

Jλ =
∑c
i=1

∑n
j=1 uijdij + λ

∑c
i=1

∑n
j=1 uij log

uij
πi
, (7)
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where dij = p(xj|θi) and uij is the membership value
of the j-th data point to the i-th cluster. The regular-
ization term in the objective function is inspired from
the work of Honda and Ichihashi[14], which is related
to the fuzzy entropy of the partition matrix, and is used
as a substitute for the fuzzifier that is normally present
in FCM-type algorithms. The algorithm estimates the
parameters of the Gaussian and multinomial distribu-
tions using an EM-type algorithm iterating through the
first order necessary conditions of optima of the ob-
jective function derived using the Lagrange multiplier
techniques.

2 Proposed Approach

We propose an entirely different approach which uses
the FCM type objective function for clustering of mixed
data. Our objective is to partition the data exploiting
the cluster substructures that are common to both the
categorical and numeric part of the data.

Our approach is inspired by the collaborative fuzzy
clustering framework introduced by Pedrycz [23], but
we solve here a different problem. Collaborative clus-
tering deals with finding a common cluster structure
among multiple data sets. In a collaborative clustering
framework, typically data are collected in a distributed
manner at different sites. In its simplest form, the objec-
tive of the data analyst is to find cluster structures that
are common to all data sets. But because of security,
privacy or other reasons the data sets cannot be shared
between sites. However, the clustering results found in-
dependently at different data sites can be shared. There
is a good amount of literature on collaborative fuzzy
clustering [25,23,8]. To illustrate the idea, consider two
sites A and B associated with data sets XA and XB .
In [25], to find clusters in XA, a regularizing term is
added to the usual FCM objective function defined on
XA, where the regularizing term uses a weighted sum
of the squared difference between the membership value
produced by XA and that computed using the centroids
generated by XB at site B. As mentioned earlier we
solve a different problem where the original data set
separated into two data sets, one involving only numer-
ical features and the other involving only categorical
features. We also use a regularizing term involving the
difference between the two partition matrices produced
on the two data sets, but we do not use the distance
of a data point from a centroid as a weight as done in
[25].

2.1 Partitioning data

We partition the dataset into two separate parts, one
corresponding to the numerical attributes and the other
corresponding to the categorical attributes, denoted as
xN and xC respectively. We shall cluster the numeri-
cal dataset separately and then cluster the categorical
dataset using the partitions obtained from the numer-
ical dataset as a constraint. This process will then be
reversed. We, thus, also have two different partition ma-
trices, UN and UC . For obvious reasons, the number of
clusters in both datasets should be the same. What we
now intend to achieve is the following: these two parti-
tioning to be as good as possible and at the same time
as similar as possible. In other words we want to find
the cluster structure that is common to both numeri-
cal and categorical data. Hence, we need to include this
factor in the objective functions of the two datasets,
XN and XC . We add a regularizing term to each of the
cost functions that captures the dissimilarity between
the two partition matrices. The cost functions for the
two datasets take the following form:

Jnλ =
∑c
i=1

∑n
j=1 u

N
ij

2
dNij + λ

∑c
i=1

∑n
j=1 (u

N
ij − uCij)2

(8)

Jcλ =
∑c
i=1

∑n
j=1 u

C
ij

2
dCij + λ

∑c
i=1

∑n
j=1 (u

N
ij − uCij)2

(9)

where:

dNij = ||xN
j − vi||2 (10)

dCij = − log p(xC
j |γi

) (11)

In (10), vi is the center of the ith cluster, and ||xN
j − vi||

is the euclidean distance between the numerical part of
the jth data point and vi. The probabilistic distance
measure in (11) is the same as that used by Chatzis[6],
which is described below:

p(xC
j |γi

) = Mult(xC
j |γi

) =
∏mc

k=1

∏Lk

l=1 γikl

1−δ(xC
jk,l)

(12)

where mc is the number of categorical attributes, Lk
is the number of possible values for the kth categorical
attribute. Here γ

ikl
is the probability of the kth cate-

gorical attribute taking the lth possible value for the ith

cluster’s distribution. δ(xCjk, l) = 0 if the kth categorical
attribute of the jth data member takes the lth possible
value, otherwise δ(xCjk, l) = 1.
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2.2 The algorithm and the update equations

Using the Lagrange Multiplier method, we can derive
the expressions for the update of the parameters. The
constraints on each of the two partitions are the follow-
ing:∑c
i=1 uij = 1,∀j (13)

and those for the categorical parameters are:∑Lk
l=1 γi,k,l = 1,∀i, k (14)

Using these constraints, we arrive at the following set
of update equations for the numerical part:

uNik = 1∑c
j=1

dN
ik

+λ

dN
jk

+λ

+ λ

∑c
j=1

uCik−u
C
jk

dN
jk

+λ∑c
j=1

dN
ik

+λ

dC
jk

+λ

(15)

vi =
∑n
j=1 u

N
ij

2
xN
j∑n

j=1 u
N
ij

2 (16)

and the following for the categorical part:

uCik = 1∑c
j=1

dC
ik

+λ

dC
jk

+λ

+ λ

∑c
j=1

uNik−u
N
jk

dC
jk

+λ∑c
j=1

dC
ik

+λ

dC
jk

+λ

(17)

γ
ikl

=
∑n
j=1 u

C
ij

2
(1−δ(xCjk,l))∑Lk

h=1

∑n
j=1 u

C
ij

2(1−δ(xCjk,h))
(18)

Using the above update equations (15) and (16), we can
minimize the cost function at (8) when we are given a
partition matrix computed based on the categorical at-
tributes. Similarly, using (17) and (18), we can optimize
(9).

We first propose an algorithm (Algorithm 1) for
clustering the numerical data, which also maximizes the
closeness between the partition generated by the nu-
merical data and a given partition generated by the
categorical data. Following that, we provide another
algorithm (Algorithm 2) that does the reverse job
of clustering the categorical data. However, our goal
is to find a common structure between the two parti-
tions minimizing Jnλ+J

c
λ. Thus another plausible choice

of objective function to drive the clustering algorithm
would be as follows:
Minimize
Jncλ =

∑c
i=1

∑n
j=1 u

N
ij

2
dNij +

∑c
i=1

∑n
j=1 u

C
ij

2
dCij

+λ

c∑
i=1

n∑
j=1

(uNij − uCij)2 (19)

subject to (13) and (18). It is easy to verify that the
necessary conditions for minimizations are nothing but
equations (15), (16), (17) and (18). Based on the opti-
mization of Jncλ , we propose an approach (Algorithm
3). Note that the algorithm will converge if any of the
UC , UN , V or γ converges.

Algorithm 1 Generates a partition based on the nu-
merical attributes that matches the clustering produced
by the categorical attributes
1: if parameter UC for the Categorical Partition is not pro-

vided then
2: Randomly initialize UC and γ to satisfy (13),(14)
3: Calculate JCλ using (9) with λ = 0, store it as JCold
4: Update uCij & γ using (17) & (18) with λ = 0

5: Calculate JCλ using (9) with λ = 0, store it as JCnew
6: if |JCnew − JCold| < ε then
7: goto Step 11
8: else
9: JCold ← JCnew
10: goto Step 4
11: if parameters UN or VN = (vN

1 , ...v
N
c ) for the Numeri-

cal data is not provided then
12: Randomly initialize VN or UN to satisfy (13)
13: Calculate JNλ using (8), with the provided λ, store it as

JNold
14: Update the uNij and VN values using (15) and (16)
15: Calculate JNλ using (8), store it as JNnew
16: if |JNnew − JNold| < ε then
17: return UN and VN

18: else
19: JNold ← JNnew
20: goto Step 14

2.3 Choice of λ

The parameter λ in Algorithms 1 and 2 controls the
extent of impact of the other partition on the cluster-
ing of data. For instance, choosing λ as 0 makes Al-
gorithm 1 work exactly like the FCM, and choosing λ
as something very large like 10000 will give rise to a
numerical partition structure which is highly similar to
the existing categorical partition. A similar effect will
be present for Algorithm 2. Therefore, we can choose
λ in these two algorithms based on our need. In Al-
gorithm 3, however, chosing λ is not an easy task. A
larger value of λ implies a greater similarity between
UC and UN , and thus, the algorithm may converge
faster. However, very large values of λ may discount the
importance of individual objective functions. In our ex-
perimental evaluations, λ = 100 gave useful results. An
alternative approach for choosing λ in each of the three
algorithms can be to use a small value at the beginning
of the iterations and then increase it up to some value
with iterations. We shall refer to this approach as the
dynamic λ approach.

3 Experimental observations

3.1 Synthetic Data

To evaluate the performance of the algorithms, and
to give a basic understanding of what the algorithms
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Algorithm 2 Generates a partition based on the cate-
gorical attributes that matches the clustering produced
by the numerical attributes
1: if parameter UN for the Numerical Partition is not pro-

vided then
2: Randomly initialize UN to satisfy (13) & compute

VN = (vN
1 , ...v

N
c )

3: Calculate JNλ using (8) with λ = 0, store it as JNold
4: Update uNij & VN using (15) & (16) with λ = 0

5: Calculate JNλ using (8) with λ = 0, store it as JNnew
6: if |JNnew − JNold| < ε then
7: goto Step 11
8: else
9: JNold ← JNnew
10: goto Step 4
11: if parameters UC or γ for the Categorical Partition are

not provided then
12: Randomly initialize the UC or γ matrices to satisfy

(13),(14)
13: Calculate JCλ using (9), with the provided λ, store it as

JCold
14: Update the uCij and γ values using (17) and (18)
15: Calculate JCλ using (9), store it as JCnew
16: if |JCnew − JCold| < ε then
17: return UC and γ
18: else
19: JCold ← JCnew
20: goto Step 14

do, we have implemented the algorithms on a synthetic
dataset along with some of its noisy variants. The syn-
thetic dataset contains 400 points divided into two clus-
ters. We call this dataset Synth. This dataset contains
two numerical features and four categorical attributes.
The numerical part is generated by a mixture of two 2-
D Gaussian distributions with mean vectors [1, 2] and

[4, 5]. The covariance matrix for each cluster is
[
1 0

0 1

]
.

Each cluster contains 200 data points. The scatter plot
of the numerical part of the dataset is shown in Fig. 1.

The four categorical attributes A1, A2, A3, A4 can
take 3, 2, 4 and 3 possible values respectively. To test
our algorithms, we shall add various levels of noise on
the categorical part of the data.

3.1.1 No noise

In the case of no noise, we have generated the categori-
cal data having the same cluster structure as that of the
numerical partition; in order to achieve this we assign
a fixed vector of attribute values for the first cluster,
while for the points from the other cluster we associate
a fixed but different vector of attribute values. These
two vectors were chosen as [2, 1, 2, 1] and [1, 1, 4, 2]. For
plotting the categorical attributes we have used orthog-
onal coding. Whenever we need to plot more than two
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Fig. 1: The numerical feature part of the Synthetic data

attributes, we performed PCA and chose the top two
principle components to plot.

Algorithm 3 Mixed Clustering for both Partitions
1: Run Algorithm 1 and obtain UN (0) and VN(0) matri-

ces
2: Run Algorithm 2 and obtain UC(0) and γ(0) matrices
3: t = 1
4: Update the UN (t), VN(t), UC(t) and γ(t) values using

(16),(17),(18) and (19)
5: Calculate tolerance = ||UC(t)− UC(t− 1)||
6: if tolerance < ε then
7: return (UC(t) + UN (t)/2)
8: else
9: t = t+ 1
10: goto Step 4

Algorithm 1 gave no mislabels for both λ = 100

and the dynamic λ approach. Algorithm 2 gave around
9 mislabels. This behaviour explains that the numerical
part exhibits a cluster structure with some overlap that
has resulted about 9 mislabels on average. Algorithm 3
performed a perfect clustering yielding no mislabels for
all parameter settings that we have tried.

3.1.2 Results with different levels of noise

We have generated five noise corrupted versions of dataset
Synth by adding different levels of noise only to the cat-
egorical attribute values and observed their effect on
the performance of our algorithms. For adding noise,
we randomly chose some percentage of the categori-
cal attribute values (in this case there are a total of
1600 attribute values), and randomly changed them to
any of the possible values (including the existing value)
for the respective attribute. We considered five different
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levels of noise : 10%, 20%, 30%, 40% and 50% and these
five datasets are named as Synth10, Synth20, Synth30,
Synth40 and Synth50 respectively.

As illustrations, in Fig. 2, in the left hand side pan-
els, we display scatter-plot of the top two principal com-
ponents of only the categorical part of the data and in
the right hand side, the top two principal components
of the entire dataset. The two clusters (the actual clus-
ters, not the output of our algorithms) are represented
by two different colors as well as by two different styles
for 10% and 50% noise levels. From these figures, it is
clear that categorical data get mixed up more with in-
crease in noise level as we corrupt the categorical part.

For Synth10, Algorithm 1 gave one mislabelling for
both λ = 100 and the dynamic λ approach. For the
strategy with dynamic λ, in this case as well as in
other cases as applicable, we increase λ as 0.1, 0.2, 0.5,
1, 2, 5, 10, 20, 50 with iterations and then fix it at
100. Algorithm 2 gave 10.16 mislabels for λ = 100 and
11.64 mislabels with the dynamic λ approach. This re-
sult explains that Algorithm 1 gets affected by adding
noise in the categorical part. Algorithm 3 performed
perfect again by giving no mislabels for both parame-
ter settings. Table 1 summarizes the clustering results
with Algorithms 1 and 2 for different noise levels. For
each noise level we ran the algorithm 30 times and Ta-
ble 1 depicts the average number of points that are
wrongly clustered over those 30 runs. As the noise level
increases, there is a marginal decrease in the perfor-
mance of both algorithms for both choices of λ, fixed
and dynamic. Algorithm 3, gives no mislabels up to 20%
noise, and results in much lesser mislabels compared to
the Algorithms 1 and 2 for the cases with more noise
(See Table 2)

Table 1 reveals that with increase in the noise level,
in general the misclassification increases. For Algorithm
1, on an average, the mislabeling increases initially by
about 0.25% and then approximately 3% with every
additional 10% noise and this is true for both fixed λ

and dynamic λ. For Algorithm 2, on the other hand,
from no-noise case up to 30% noise there is not much
impact of noise on the performance of the algorithm
and beyond 20% noise there is a marginal increase in
misclassification. In case of Algorithm 2, generally the
dynamic λ is found to work better.

Table 2 summarizes the results produced by Algo-
rithm 3 on different variants of Synth for λ = 100 and
dynamic λ approach summarized over 30 runs. For Al-
gorithm 3, both fixed and dynamic λ are found to work
equally well. Even when the noise level is 50%, only
1.5-1.7% mislabeling is produced by Algorithm 3. Note
that, when the algorithm converges, both UN and UC

Table 1: Percentage (%) of mislabeling for synthetic
data for Algorithms 1 and 2

Noise Algorithm 1 Algorithm 2
(%) λ = 100 λ∗ λ = 100 λ∗

0 0.00 0.00 2.29 2.48
10 0.25 0.25 2.54 2.91
20 0.50 0.50 2.76 2.61
30 3.00 3.00 3.22 3.20
40 5.00 5.00 4.53 3.14
50 8.25 8.25 4.57 4.32

Table 2: Percentage (%) of mislabeling for synthetic
data with Algorithm 3

Noise λ = 100 λ∗

(%) UN UC UC + UN UN UC UC + UN

0 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
30 0.25 0.25 0.25 0.25 0.25 0.25
40 0.75 0.75 0.75 0.75 0.75 0.75
50 1.50 1.50 1.50 1.65 1.40 1.70

converges to the same partition and hence both criteria
become the same.

3.2 Real Datasets

We have implemented our algorithm on three real bench-
mark mixed datasets obtained from the UCI Machine
Learning repository :
(https://archive.ics.uci.edu/ml/datasets.html).
These datasets are for classification problem (every data
point has a class label). Hence, it enables us to evaluate
our results based on the consistency of the clustering re-
sults with the actual class labels. We emphasize that,
a mismatch between clustering and the actual class la-
bels does not necessarily imply poor performance of the
clustering algorithm as the cluster structure may be dif-
ferent from the class structure. However, we follow this
protocol as others have done so. Note that for these
datasets, we have performed the Z-score normalization
of the numerical attributes.

To evaluate the performance of our algorithms and
for comparison with others, we compute the cluster-
ing accuracy (r), the number of data points having
the same cluster label and class label, after relabeling.
We run Algorithm 3 for 30 times for each dataset and
computed the mean value of r which we compare with
performance of other algorithms. The results for each
dataset are summarized next.

Acute Inflammations Dataset This two class dataset
consists of 120 data points with each data point having

https://archive.ics.uci.edu/ml/datasets.html
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Table 3: Performance comparison for Acute Inflamma-
tions Data (Algorithm 3, λ = 2)

Algorithm Clustering Accuracy r
Proposed algorithm 0.883
KL-FCM-GM [6] 0.682 (reported from [20])
Fuzzy k-prototypes [20] 0.710 (reported from [20])
EKP [27] 0.508 (reported from [20])

Table 4: Performance comparison for Heart Disease
Data (Algorithm 3, λ = 2)

Algorithm Clustering Accuracy r
Proposed algorithm 0.788
Fuzzy k-prototypes [20] 0.835 (reported from [20])
KL-FCM-GM [6] 0.758 (reported from [20])
EKP [27] 0.545 (reported from [20])

Table 5: Performance comparison for Credit Approval
Data (Algorithm 3, λ = 10)

Algorithm Clustering Accuracy r
Proposed algorithm 0.882
OCIL [7] 0.756 (reported from [7])
Fuzzy k-prototypes [20] 0.838 (reported from [20])
KL-FCM-GM [6] 0.584 (reported from [20])
EKP [27] 0.682 (reported from [20])

one numerical attribute and six categorical attributes.
When we use λ = 2 the clustering quality is very good,
it is much better than all three algorithms compared as
shown in Table 3. A natural question comes why did
we use a higher value of λ? We shall see later (Table 6)
that even λ = 10 produces partitions better than those
by all three algorithms compared.

Heart Disease dataset This two-class dataset consists
of 303 points with each point having five numerical at-
tributes and eight categorical attributes. Table 4 sum-
marizes the results over 30 iterations of Algorithm 3.
Our algorithm performed quite well compared to the
existing algorithms, providing better than KL-FCM-
GM[6] and EKP[27] algorithms.

Credit Approval Data This dataset consists of 653 data
points (after removing data points with missing at-
tributes) distributed in two classes. Each data point is
represented by six numerical attributes and nine cate-
gorical attributes. In Table 5 we find that our algorithm
outperforms all the existing algorithms for this dataset.

Statlog Heart Data This dataset consists of 270 data
points distributed in two classes. Each data point is
represented by seven numerical attributes and six cat-
egorical attributes. In Table 6 we find that our algo-
rithm performs better than two of the existing algo-

Table 6: Performance comparison for Statlog Heart
Data (Algorithm 3, λ = 2)

Algorithm Clustering Accuracy r
Proposed algorithm 0.822
OCIL [7] 0.824 (reported from [7])
k-Prototypes [15] 0.770 (reported from [7])
k-Means 0.596 (reported from [7])

Table 7: Performance comparison for German Credit
Data (Algorithm 3, λ = 1000)

Algorithm Clustering Accuracy r
Proposed algorithm 0.609
OCIL [7] 0.694 (reported from [7])
k-Prototypes [15] 0.671 (reported from [7])
k-Means 0.671 (reported from [7])

rithms, while the performance of the remaining algo-
rithm, OCIL, is marginally better.

German Credit Data This dataset consists of 1000 data
points distributed in two classes. Each data point is rep-
resented by 7 numerical attributes and 13 categorical
attributes. In Table 7 we find that our algorithm could
not match the performance of the three algorithms for
this data sets. To summarize, on average Algorithm 3
is found to work better.

3.2.1 Effect of λ

As we pointed out in Section 2.3, λ is an important pa-
rameter for the performance of Algorithm 3. Moreover,
the algorithm can be terminated using different condi-
tions such as convergence of ||(UN + UC)/2||, ||UN ||
and ||UC ||. In this section, we investigate the effect of
the termination condition as well as that of different
choices of λ on the performance of Algorithm 3 for the
three real datasets. Table 8 shows the summary of the
performance of Algorithm 3 for different choices of λ
when the termination is done on ||(UN + UC)/2||. In
Table 9, we present the same when Algorithm 3 termi-
nated on ||UN ||. Finally, Table 10 is generated based on
termination with ||UC ||. We emphasize the best result
for each dataset in bold. From Table 8, 9, and 10 we
find that both λ and the termination criterion have a
noticeable effect on the performance of Algorithm 3. In
particular, for Heart Disease and Credit Approval, the
performance improves as λ increases from 2 to 10, while
that is not the case for Acute Inflammation data for
which λ = 2 provides the best result. Comparing Table
9 and Table 10, we find that termination on UC yields
quite good results for Heart Disease and Credit Ap-
proval, but this is not the case for Acute Inflammation.
The last column, in each of these three tables (Tables
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8 - 10) depicts the performance yielded by the strategy
of dynamic λ. From these tables, we observe that al-
though the dynamic λ cannot produce the best results,
it does produce comparable results. Based on these lim-
ited experiments, we may summarize that λ = 100 is
a good choice for which the termination condition does
not have much effect across different data sets. Simi-
larly, for dynamic λ the impact of the termination con-
dition is not much for different data sets.Therefore, the
strategy of dynamic λ is a useful strategy.

3.2.2 Convergence behavior of the algorithms

For Algorithms 1 and 2, we use alternating optimiza-
tion to optimize their respective objective function by
iterating through the necessary conditions for optimiza-
tion. Therefore Algorithms 1 and 2 will terminate either
at a local minima or at a saddle point. In Fig.3 we show
the variation of the objective function for Algorithms 1
and 2 with the number of iterations when run on the
Credit Approval dataset. In Fig.4 we show the varia-
tion of the cost function for Algorithm 3 with number
of iterations when run on the Credit Approval dataset.
The figures are for a typical run of the algorithm.

4 Conclusion and Future work

We have proposed a new approach for clustering mixed
datasets inspired by the collaborative clustering frame-
works. In particular, we have proposed three algorithms.
The first algorithm (Algorithm 1) gives more impor-
tance to numerical data and the structure found in the
categorical data is used a regularizing term, while the
second one (Algorithm 2) switches the role of numeri-
cal and categorical data; the third one (Algorithm 3),
on the other hand, attempts to find cluster structure
that is common to both numerical data and categori-
cal data. All three algorithms depend on a regularizing
factor λ. An important issue is how to decide on the
value of λ. It depends on the datasets and the require-
ments. For example, if the partition of the numerical
data forms the regularizing term, and we want the nu-
merical part to dominate the cluster structure, we need
to use a high value of λ. For Algorithm 3, a higher
λ, on the other hand, assigns a greater weight for the
closeness of the numerical and categorical structures.
We have used fixed λ, as well as proposed a strategy
that uses dynamic λ. The dynamic λ strategy works
fine; however, depending on the dataset, an appropri-
ate choice of fixed λ may work better. This is an issue,
that is yet to be resolved.
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Fig. 2: Clustering results with different levels of noise
on Synth dataset
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Fig. 3: Convergence plot for Algorithms 1 and 2 for
Credit Approval dataset
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Fig. 4: Convergence plot for Algorithm 3 for Credit Ap-
proval dataset
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